Search results
Results from the WOW.Com Content Network
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash: 32 or 64 bits add,shift,xor MurmurHash: 32, 64, or 128 bits product/rotation ...
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
A keyed hash function based on Keccak. Can also be used without a key as a regular hash function. KMAC256(K, X, L, S) KMACXOF128(K, X, L, S) KMACXOF256(K, X, L, S) TupleHash128(X, L, S) A function for hashing tuples of strings. The output of this function depends on both the contents and the sequence of input strings. TupleHash256(X, L, S)
It is of interest as a type of post-quantum cryptography. So far, hash-based cryptography is used to construct digital signatures schemes such as the Merkle signature scheme, zero knowledge and computationally integrity proofs, such as the zk-STARK [1] proof system and range proofs over issued credentials via the HashWires [2] protocol.
BLAKE is a cryptographic hash function based on Daniel J. Bernstein's ChaCha stream cipher, but a permuted copy of the input block, XORed with round constants, is added before each ChaCha round. Like SHA-2, there are two variants differing in the word size. ChaCha operates on a 4×4 array of words.
In computer science and cryptography, Whirlpool (sometimes styled WHIRLPOOL) is a cryptographic hash function. It was designed by Vincent Rijmen (co-creator of the Advanced Encryption Standard) and Paulo S. L. M. Barreto, who first described it in 2000. The hash has been recommended by the NESSIE project.
In cryptography, the Merkle–Damgård construction or Merkle–Damgård hash function is a method of building collision-resistant cryptographic hash functions from collision-resistant one-way compression functions. [1]: 145 This construction was used in the design of many popular hash algorithms such as MD5, SHA-1, and SHA-2.