enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    For example, the rhamphoid cusp y 2 = x 5 has a singularity of order 2 at the origin. After blowing up at its singular point it becomes the ordinary cusp y 2 = x 3, which still has multiplicity 2. It is clear that the singularity has improved, since the degree of defining polynomial has decreased. This does not happen in general.

  3. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    has a limit of +∞ as x → 0 +, ƒ(x) has the vertical asymptote x = 0, even though ƒ(0) = 5. The graph of this function does intersect the vertical asymptote once, at (0, 5). It is impossible for the graph of a function to intersect a vertical asymptote (or a vertical line in general) in more than one point.

  4. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In various areas of mathematics, the zero set of a function is the set of all its zeros. More precisely, if f : X → R {\displaystyle f:X\to \mathbb {R} } is a real-valued function (or, more generally, a function taking values in some additive group ), its zero set is f − 1 ( 0 ) {\displaystyle f^{-1}(0)} , the inverse image of { 0 ...

  5. Fundamental theorem of algebra - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of_algebra

    To establish that every complex polynomial of degree n > 0 has a zero, it suffices to show that every complex square matrix of size n > 0 has a (complex) eigenvalue. [13] The proof of the latter statement is by contradiction. Let A be a complex square matrix of size n > 0 and let I n be the unit matrix of the same

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.

  7. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    the multiplicity of the prime factor 2 is 2, while the multiplicity of each of the prime factors 3 and 5 is 1. Thus, 60 has four prime factors allowing for multiplicities, but only three distinct prime factors.

  8. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    But any multiple in Z[X] of qx − p has leading term divisible by q and constant term divisible by p, which proves the statement. This argument shows that more generally, any irreducible factor of P can be supposed to have integer coefficients, and leading and constant coefficients dividing the corresponding coefficients of P .

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.