Ads
related to: cubes math chart- 3579 S High St, Columbus, OH · Directions · (614) 409-0683
Search results
Results from the WOW.Com Content Network
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 2 3 = 8 or (x + 1) 3. The cube is also the number multiplied by its square: n 3 = n × n 2 = n × n × n. The cube function is the function x ↦ x 3 (often denoted y = x 3) that maps a number to its cube. It is an odd function, as
The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... (sequence A002851 in the OEIS).A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual.
In graph theory, the hypercube graph Q n is the graph formed from the vertices and edges of an n-dimensional hypercube.For instance, the cube graph Q 3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube.
5-cube, Rectified 5-cube, 5-cube, Truncated 5-cube, Cantellated 5-cube, Runcinated 5-cube, Stericated 5-cube; 5-orthoplex, Rectified 5-orthoplex, Truncated 5-orthoplex, Cantellated 5-orthoplex, Runcinated 5-orthoplex; Prismatic uniform 5-polytope For each polytope of dimension n, there is a prism of dimension n+1. [citation needed]
A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 in the OEIS). A perfect power has a common divisor m > 1 for all multiplicities (it is of the form a m for some a > 1 and m > 1).
Ads
related to: cubes math chart- 3579 S High St, Columbus, OH · Directions · (614) 409-0683