enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Expected value or mean: the weighted average of the possible values, using their probabilities as their weights; or the continuous analog thereof. Median: the value such that the set of values less than the median, and the set greater than the median, each have probabilities no greater than one-half.

  4. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...

  5. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The probabilities of rolling several numbers using two dice. Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur.

  6. Bernstein inequalities (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Bernstein_inequalities...

    In probability theory, Bernstein inequalities give bounds on the probability that the sum of random variables deviates from its mean. In the simplest case, let X 1, ..., X n be independent Bernoulli random variables taking values +1 and −1 with probability 1/2 (this distribution is also known as the Rademacher distribution), then for every positive ,

  7. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  8. Binomial sum variance inequality - Wikipedia

    en.wikipedia.org/wiki/Binomial_sum_variance...

    Consider the sum, Z, of two independent binomial random variables, X ~ B(m 0, p 0) and Y ~ B(m 1, p 1), where Z = X + Y.Then, the variance of Z is less than or equal to its variance under the assumption that p 0 = p 1 = ¯, that is, if Z had a binomial distribution with the success probability equal to the average of X and Y 's probabilities. [8]

  9. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square ...