Search results
Results from the WOW.Com Content Network
[citation needed] One author uses the terminology of the "Rule of Average Conditional Probabilities", [4] while another refers to it as the "continuous law of alternatives" in the continuous case. [5] This result is given by Grimmett and Welsh [6] as the partition theorem, a name that they also give to the related law of total expectation.
Median: the value such that the set of values less than the median, and the set greater than the median, each have probabilities no greater than one-half. Mode: for a discrete random variable, the value with highest probability; for an absolutely continuous random variable, a location at which the probability density function has a local peak.
Consider the sum, Z, of two independent binomial random variables, X ~ B(m 0, p 0) and Y ~ B(m 1, p 1), where Z = X + Y.Then, the variance of Z is less than or equal to its variance under the assumption that p 0 = p 1 = ¯, that is, if Z had a binomial distribution with the success probability equal to the average of X and Y 's probabilities. [8]
[43] [44] One way to generate random variates samples from a binomial distribution is to use an inversion algorithm. To do so, one must calculate the probability that Pr(X = k) for all values k from 0 through n. (These probabilities should sum to a value close to one, in order to encompass the entire sample space.)
To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive events (events with no common results, such as the events {1,6}, {3}, and {2,4}), the probability that at least one of the events will occur is given by the sum of the probabilities of all the individual events. [28]
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
In probability theory, Boole's inequality, also known as the union bound, says that for any finite or countable set of events, the probability that at least one of the events happens is no greater than the sum of the probabilities of the individual events. This inequality provides an upper bound on the probability of occurrence of at least one ...