enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black–Scholes equation - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_equation

    These are the same solutions (up to time translation) that were obtained by Fischer Black in 1976. [6] Reverting ,, to the original set of variables yields the above stated solution to the Black–Scholes equation. The asymptotic condition can now be realized.

  3. Black–Scholes model - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_model

    From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return (instead replacing the ...

  4. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...

  5. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    When deriving further properties of GBM, use can be made of the SDE of which GBM is the solution, or the explicit solution given above can be used. For example, consider the stochastic process log(S t). This is an interesting process, because in the Black–Scholes model it is related to the log return of the stock price.

  6. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    Itô's lemma can be used to derive the Black–Scholes equation for an option. [2] Suppose a stock price follows a geometric Brownian motion given by the stochastic differential equation dS = S(σdB + μ dt). Then, if the value of an option at time t is f(t, S t), Itô's lemma gives

  7. Change of variables (PDE) - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables_(PDE)

    If we know that (,) satisfies an equation (like the Black–Scholes equation) we are guaranteed that we can make good use of the equation in the derivation of the equation for a new function (,) defined in terms of the old if we write the old V as a function of the new v and write the new and x as functions of the old t and S.

  8. Black model - Wikipedia

    en.wikipedia.org/wiki/Black_model

    The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.

  9. Option style - Wikipedia

    en.wikipedia.org/wiki/Option_style

    Assuming an arbitrage-free market, a partial differential equation known as the Black-Scholes equation can be derived to describe the prices of derivative securities as a function of few parameters. Under simplifying assumptions of the widely adopted Black model , the Black-Scholes equation for European options has a closed-form solution known ...