enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary search - Wikipedia

    en.wikipedia.org/wiki/Binary_search

    Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...

  3. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  4. Search tree - Wikipedia

    en.wikipedia.org/wiki/Search_tree

    For all nodes, the left subtree's key must be less than the node's key, and the right subtree's key must be greater than the node's key. These subtrees must all qualify as binary search trees. The worst-case time complexity for searching a binary search tree is the height of the tree, which can be as small as O(log n) for a tree with n elements.

  5. Analysis of algorithms - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_algorithms

    In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity ) or the ...

  6. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.

  7. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Algorithms are often evaluated by their computational complexity, or maximum theoretical run time. Binary search functions, for example, have a maximum complexity of O(log n), or logarithmic time. In simple terms, the maximum number of operations needed to find the search target is a logarithmic function of the size of the search space.

  8. Time complexity - Wikipedia

    en.wikipedia.org/wiki/Time_complexity

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations N as the result of input size n for each function. In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm.

  9. Potential method - Wikipedia

    en.wikipedia.org/wiki/Potential_method

    The potential function method is commonly used to analyze Fibonacci heaps, a form of priority queue in which removing an item takes logarithmic amortized time, and all other operations take constant amortized time. [4] It may also be used to analyze splay trees, a self-adjusting form of binary search tree with logarithmic amortized time per ...