Search results
Results from the WOW.Com Content Network
Chapter 8 (The solution of equations of the fifth degree at the Wayback Machine (archived 31 March 2010)) gives a description of the solution of solvable quintics x 5 + cx + d. Victor S. Adamchik and David J. Jeffrey, "Polynomial transformations of Tschirnhaus, Bring and Jerrard," ACM SIGSAM Bulletin, Vol. 37, No. 3, September 2003, pp. 90–94.
A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by
This problem is commonly resolved by the use of spline interpolation. Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree. Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform.
In the mathematical field of numerical analysis, Runge's phenomenon (German:) is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.
The fact that every polynomial equation of positive degree has solutions, possibly non-real, was asserted during the 17th century, but completely proved only at the beginning of the 19th century. This is the fundamental theorem of algebra , which does not provide any tool for computing exactly the solutions, although Newton's method allows ...
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.
Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer. Constant function: polynomial of degree zero, graph is a horizontal straight line; Linear function: First degree polynomial, graph is a straight line. Quadratic function: Second degree polynomial, graph is a parabola.
The following names are assigned to polynomials according to their degree: [2] [3] [4] Special case – zero (see § Degree of the zero polynomial, below) Degree 0 – non-zero constant [5] Degree 1 – linear; Degree 2 – quadratic; Degree 3 – cubic; Degree 4 – quartic (or, if all terms have even degree, biquadratic) Degree 5 – quintic