Search results
Results from the WOW.Com Content Network
The prime numbers are kept secret. Messages can be encrypted by anyone, via the public key, but can only be decrypted by someone who knows the private key. [1] The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem.
PKCS #8 is one of the family of standards called Public-Key Cryptography Standards (PKCS) created by RSA Laboratories. The latest version, 1.2, is available as RFC 5208. [1] The PKCS #8 private key may be encrypted with a passphrase using one of the PKCS #5 standards defined in RFC 2898, [2] which supports multiple encryption schemes.
It provides the basic definitions of and recommendations for implementing the RSA algorithm for public-key cryptography. It defines the mathematical properties of public and private keys, primitive operations for encryption and signatures, secure cryptographic schemes, and related ASN.1 syntax representations. The current version is 2.2 (2012 ...
RSA uses exponentiation modulo a product of two very large primes, to encrypt and decrypt, performing both public key encryption and public key digital signatures. Its security is connected to the extreme difficulty of factoring large integers , a problem for which there is no known efficient general technique.
PKCS Standards Summary; Version Name Comments PKCS #1: 2.2: RSA Cryptography Standard [1]: See RFC 8017. Defines the mathematical properties and format of RSA public and private keys (ASN.1-encoded in clear-text), and the basic algorithms and encoding/padding schemes for performing RSA encryption, decryption, and producing and verifying signatures.
In cryptography, the RSA problem summarizes the task of performing an RSA private-key operation given only the public key. The RSA algorithm raises a message to an exponent, modulo a composite number N whose factors are not known. Thus, the task can be neatly described as finding the e th roots of an arbitrary number, modulo N.
For example, in RSA, the private key is used for decrypting messages, while in the Digital Signature Algorithm (DSA), the private key is used for authenticating them. The public key can be sent over non-secure channels or shared in public; the private key is only available to its owner.
Symmetric-key algorithms use a single shared key; keeping data secret requires keeping this key secret. Public-key algorithms use a public key and a private key. The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the receiver's public key; only the holder of the private key can ...