Search results
Results from the WOW.Com Content Network
Hydrogen bonds arise from a combination of electrostatics (multipole-multipole and multipole-induced multipole interactions), covalency (charge transfer by orbital overlap), and dispersion (London forces). [5] In weaker hydrogen bonds, [13] hydrogen atoms tend to bond to elements such as sulfur (S) or chlorine (Cl); even carbon (C) can serve as ...
A hydrogen bond is an extreme form of dipole-dipole bonding, referring to the attraction between a hydrogen atom that is bonded to an element with high electronegativity, usually nitrogen, oxygen, or fluorine. [4] The hydrogen bond is often described as a strong electrostatic dipole–dipole interaction.
Molecular self-assembly is a key concept in supramolecular chemistry. [6] [7] [8] This is because assembly of molecules in such systems is directed through non-covalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-stacking interactions, and/or electrostatic) as well as electromagnetic interactions.
[9] [10] Hydrogen bonds are amongst the strong intermolecular interactions know other than ion-dipole interactions. [10] For intermolecular hydrogen bonds the δ+ hydrogen interacts with a δ- on an adjacent molecule. Examples of molecular solids that hydrogen bond are water, amino acids, and acetic acid.
A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...
Hydrogen bonds formed among various monomers guarantee the construction of hydrogen-bonded organic frameworks with different assembly architectures. [15] [16] [17] The constitution of the hydrogen pairs is based on the structural and functional design of the HOFs, therefore different hydrogen bonding pairs should be selected following systematic requirements.
The source of adhesive forces, according to the dispersive adhesion mechanism, is the weak interactions that occur between molecules close together. [2] These interactions include London dispersion forces, Keesom forces, Debye forces and hydrogen bonds. Individually, these attractions are not very strong, but when summed over the bulk of a ...
In chemistry, sigma hole interactions (or σ-hole interactions) are a family of intermolecular forces that can occur between several classes of molecules and arise from an energetically stabilizing interaction between a positively-charged site, termed a sigma hole, and a negatively-charged site, typically a lone pair, on different atoms that are not covalently bonded to each other. [1]