Search results
Results from the WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
The SI unit of dynamic viscosity is the newton-second per square meter (N·s/m 2), also frequently expressed in the equivalent forms pascal-second (Pa·s), kilogram per meter per second (kg·m −1 ·s −1) and poiseuille (Pl). The CGS unit is the poise (P, or g·cm −1 ·s −1 = 0.1 Pa·s), [28] named after Jean Léonard Marie Poiseuille.
This transfer of momentum can be thought of as a frictional force between layers of flow. Since the momentum transfer is caused by free motion of gas molecules between collisions, increasing thermal agitation of the molecules results in a larger viscosity. Hence, gaseous viscosity increases with temperature.
μ is the dynamic viscosity of the solvent. ... D is the diffusion coefficient in gas or liquid filling the pores, ... Oxygen (g) Air (g) 25:
The basic form of a 2-dimensional thin film equation is [3] [4] [5] = where the fluid flux is = [(+ ^) + ^] +, and μ is the viscosity (or dynamic viscosity) of the liquid, h(x,y,t) is film thickness, γ is the interfacial tension between the liquid and the gas phase above it, is the liquid density and the surface shear.
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
A gas is said to be in local equilibrium if it satisfies this equation. [4] The assumption of local equilibrium leads directly to the Euler equations , which describe fluids without dissipation, i.e. with thermal conductivity and viscosity equal to 0 {\displaystyle 0} .