Search results
Results from the WOW.Com Content Network
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 ...
Illustrative of the bromination of an alkene is the route to the anesthetic halothane from trichloroethylene: [6] Iodination and bromination can be effected by the addition of iodine and bromine to alkenes. The reaction, which conveniently proceeds with the discharge of the color of I 2 and Br 2, is the basis of the analytical method.
3 /Br 2 +1.478: BrO − 3 /Br 2 ... Bromine addition to alkene reaction mechanism. An old qualitative test for the presence of the alkene functional group is that ...
Here is the mechanism of this reaction: The mechanism for bromination of benzene. The mechanism for iodination is slightly different: iodine (I 2) is treated with an oxidizing agent such as nitric acid to obtain the electrophilic iodine ("I +", probably IONO 2). Other conditions for iodination include I 2, HIO 3, H 2 SO 4, and N-iodosuccinimide ...
3 /Br 2 +1.478: BrO − 3 /Br 2 ... Bromine addition to alkene reaction mechanism. An old qualitative test for the presence of the alkene functional group is that ...
Ketene cycloadditions proceed by a concerted, [2+2] cycloaddition mechanism. Ketenes, unlike most alkenes, can align antarafacially with respect to other alkenes. Thus, the suprafacial- antarafacial geometry required for concerted, thermal [2+2] cycloaddition can be achieved in reactions of ketenes. [4]
The simplest halonium ions are of the structure H− + −H (X = F, Cl, Br, I). Many halonium ions have a three-atom cyclic structure, similar to that of an epoxide, resulting from the formal addition of a halogenium ion X + to a C=C double bond, as when a halogen is added to an alkene. [1]
Likewise, 1-chloropropane and 2-chloropropane give propene. Zaitsev's rule helps to predict regioselectivity for this reaction type. In general, the reaction of a haloalkane with potassium hydroxide can compete with an S N 2 nucleophilic substitution reaction by OH − a strong, unhindered nucleophile. Alcohols are however generally minor products.