enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  3. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...

  4. Frame problem - Wikipedia

    en.wikipedia.org/wiki/Frame_problem

    The solution to the frame problem given in the fluent calculus is to specify the effects of actions by stating how a term representing the state changes when the action is executed. For example, the action of opening the door at time 0 is represented by the formula:

  5. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/.../Constraint_satisfaction_problem

    Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.

  6. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    Computationally, the problem is NP-hard, and the corresponding decision problem, deciding if items can fit into a specified number of bins, is NP-complete. Despite its worst-case hardness, optimal solutions to very large instances of the problem can be produced with sophisticated algorithms. In addition, many approximation algorithms exist.

  7. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning tree, which must have weight at least that of the minimum spanning tree, implying that w(T) ≤ w(C) - lower bound to the cost of the optimal solution.

  8. Cigarette smokers problem - Wikipedia

    en.wikipedia.org/wiki/Cigarette_smokers_problem

    The solution is not allowed to use conditional statements. Patil used a proof in terms of Petri nets to claim that a solution to the cigarette smokers problem using Edsger Dijkstra 's semaphore primitives is impossible, and to suggest that a more powerful primitive is necessary.

  9. Dekker's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dekker's_algorithm

    Dekker's algorithm is the first known correct solution to the mutual exclusion problem in concurrent programming where processes only communicate via shared memory. The solution is attributed to Dutch mathematician Th. J. Dekker by Edsger W. Dijkstra in an unpublished paper on sequential process descriptions [1] and his manuscript on cooperating sequential processes. [2]