enow.com Web Search

  1. Ad

    related to: lee introduction to smooth manifolds

Search results

  1. Results from the WOW.Com Content Network
  2. John M. Lee - Wikipedia

    en.wikipedia.org/wiki/John_M._Lee

    Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.

  3. Template:Lee Introduction to Smooth Manifolds - Wikipedia

    en.wikipedia.org/wiki/Template:Lee_Introduction...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  4. Pushforward (differential) - Wikipedia

    en.wikipedia.org/wiki/Pushforward_(differential)

    Let : be a smooth map of smooth manifolds. Given , the differential of at is a linear map ... Lee, John M. (2003). Introduction to Smooth Manifolds. Springer Graduate ...

  5. Lee Hwa Chung theorem - Wikipedia

    en.wikipedia.org/wiki/Lee_Hwa_Chung_theorem

    Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3.Graduate-level textbook on smooth manifolds. Hwa-Chung, Lee, "The Universal Integral Invariants of Hamiltonian Systems and Application to the Theory of Canonical Transformations", Proceedings of the Royal Society of Edinburgh.

  6. Lie group action - Wikipedia

    en.wikipedia.org/wiki/Lie_group_action

    Michele Audin, Torus actions on symplectic manifolds, Birkhauser, 2004 John Lee, Introduction to smooth manifolds , chapter 9, ISBN 978-1-4419-9981-8 Frank Warner, Foundations of differentiable manifolds and Lie groups , chapter 3, ISBN 978-0-387-90894-6

  7. Congruence (manifolds) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(manifolds)

    Lee, John M. (2003). Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).

  8. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    An n-manifold will mean a topological ... for differentiable manifolds the transition maps are required to be smooth ... Lee, John M. (2000). Introduction to ...

  9. Time dependent vector field - Wikipedia

    en.wikipedia.org/wiki/Time_dependent_vector_field

    Lee, John M., Introduction to Smooth Manifolds, Springer-Verlag, New York (2003) ISBN 0-387-95495-3. Graduate-level textbook on smooth manifolds.

  1. Ad

    related to: lee introduction to smooth manifolds