enow.com Web Search

  1. Ads

    related to: 3 manifolds in math practice
    • Start Your Free Trial

      First Month Free, No Commitment

      Sign Up In Just 60 Seconds

    • About Us

      AdaptedMind Creates A Custom

      Learning Experience For Your Child

Search results

  1. Results from the WOW.Com Content Network
  2. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    In mathematics, the Gieseking manifold is a cusped hyperbolic 3-manifold of finite volume. It is non-orientable and has the smallest volume among non-compact hyperbolic manifolds, having volume approximately 1.01494161.

  3. Prime decomposition of 3-manifolds - Wikipedia

    en.wikipedia.org/wiki/Prime_decomposition_of_3...

    If is a prime 3-manifold then either it is or the non-orientable bundle over , or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S 2 {\displaystyle S^{2}} over S 1 . {\displaystyle ...

  4. Introduction to 3-Manifolds - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_3-Manifolds

    Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...

  5. Tameness theorem - Wikipedia

    en.wikipedia.org/wiki/Tameness_theorem

    In mathematics, the tameness theorem states that every complete hyperbolic 3-manifold with finitely generated fundamental group is topologically tame, in other words homeomorphic to the interior of a compact 3-manifold. The tameness theorem was conjectured by Marden (1974). It was proved by Agol (2004) and, independently, by Danny Calegari and ...

  6. Category:3-manifolds - Wikipedia

    en.wikipedia.org/wiki/Category:3-manifolds

    Once a small subfield of geometric topology, the theory of 3-manifolds has experienced tremendous growth in the latter half of the 20th century. The methods used tend to be quite specific to three dimensions, since different phenomena occur for 4-manifolds and higher dimensions.

  7. Moise's theorem - Wikipedia

    en.wikipedia.org/wiki/Moise's_theorem

    In geometric topology, a branch of mathematics, Moise's theorem, proved by Edwin E. Moise in Moise (1952), states that any topological 3-manifold has an essentially unique piecewise-linear structure and smooth structure.

  1. Ads

    related to: 3 manifolds in math practice