Search results
Results from the WOW.Com Content Network
In mathematics, the Gieseking manifold is a cusped hyperbolic 3-manifold of finite volume. It is non-orientable and has the smallest volume among non-compact hyperbolic manifolds, having volume approximately 1.01494161.
Other related books on the mathematics of 3-manifolds include 3-manifolds by John Hempel (1976), Knots, links, braids and 3-manifolds by Victor V. Prasolov and Alexei B. Sosinskiĭ (1997), Algorithmic topology and classification of 3-manifolds by Sergey V. Matveev (2nd ed., 2007), and a collection of unpublished lecture notes on 3-manifolds by Allen Hatcher.
If is a prime 3-manifold then either it is or the non-orientable bundle over , or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S 2 {\displaystyle S^{2}} over S 1 . {\displaystyle ...
Manifolds need not be closed; thus a line segment without its end points is a manifold. They are never countable, unless the dimension of the manifold is 0. Putting these freedoms together, other examples of manifolds are a parabola, a hyperbola, and the locus of points on a cubic curve y 2 = x 3 − x (a closed loop piece and an open, infinite ...
In mathematics, the tameness theorem states that every complete hyperbolic 3-manifold with finitely generated fundamental group is topologically tame, in other words homeomorphic to the interior of a compact 3-manifold. The tameness theorem was conjectured by Marden (1974). It was proved by Agol (2004) and, independently, by Danny Calegari and ...
In mathematics, in the topology of 3-manifolds, the loop theorem is a generalization of Dehn's lemma. The loop theorem was first proven by Christos Papakyriakopoulos in 1956, along with Dehn's lemma and the Sphere theorem. A simple and useful version of the loop theorem states that if for some 3-dimensional manifold M with boundary ∂M there ...
The geometry and topology of three-manifolds is a set of widely circulated notes for a graduate course taught at Princeton University by William Thurston from 1978 to 1980 describing his work on 3-manifolds. They were written by Thurston, assisted by students William Floyd and Steven Kerchoff. [1]
In mathematics, a spherical 3-manifold M is a 3-manifold of the form = / where is a finite subgroup of O(4) acting freely by rotations on the 3-sphere. All such manifolds are prime, orientable, and closed. Spherical 3-manifolds are sometimes called elliptic 3-manifolds.