Ads
related to: 3 manifolds in math practice answers
Search results
Results from the WOW.Com Content Network
In mathematics, the Gieseking manifold is a cusped hyperbolic 3-manifold of finite volume. It is non-orientable and has the smallest volume among non-compact hyperbolic manifolds, having volume approximately 1.01494161.
If is a prime 3-manifold then either it is or the non-orientable bundle over , or it is irreducible, which means that any embedded 2-sphere bounds a ball. So the theorem can be restated to say that there is a unique connected sum decomposition into irreducible 3-manifolds and fiber bundles of S 2 {\displaystyle S^{2}} over S 1 . {\displaystyle ...
Familiar examples of two-dimensional manifolds include the sphere, torus, and Klein bottle; this book concentrates on three-dimensional manifolds, and on two-dimensional surfaces within them. A particular focus is a Heegaard splitting, a two-dimensional surface that partitions a 3-manifold into two handlebodies. It aims to present the main ...
In mathematics, the tameness theorem states that every complete hyperbolic 3-manifold with finitely generated fundamental group is topologically tame, in other words homeomorphic to the interior of a compact 3-manifold. The tameness theorem was conjectured by Marden (1974). It was proved by Agol (2004) and, independently, by Danny Calegari and ...
In topology, a branch of mathematics, a Dehn surgery, named after Max Dehn, is a construction used to modify 3-manifolds. The process takes as input a 3-manifold together with a link . It is often conceptualized as two steps: drilling then filling .
Once a small subfield of geometric topology, the theory of 3-manifolds has experienced tremendous growth in the latter half of the 20th century. The methods used tend to be quite specific to three dimensions, since different phenomena occur for 4-manifolds and higher dimensions.
Ads
related to: 3 manifolds in math practice answers