Search results
Results from the WOW.Com Content Network
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
string" is a substring of "substring" In formal language theory and computer science, a substring is a contiguous sequence of characters within a string. [citation needed] For instance, "the best of" is a substring of "It was the best of times". In contrast, "Itwastimes" is a subsequence of "It was the best of times", but not a substring.
The length of a string can be stored implicitly by using a special terminating character; often this is the null character (NUL), which has all bits zero, a convention used and perpetuated by the popular C programming language. [11] Hence, this representation is commonly referred to as a C string.
String literals ("text" in the C source code) are converted to arrays during compilation. [2] The result is an array of code units containing all the characters plus a trailing zero code unit. In C90 L"text" produces a wide string.
Not exactly equivalent to any string function in any language which handles strings differently, but in BASIC it was a string function. —Preceding unsigned comment added by 203.206.162.148 05:17, 22 June 2009 (UTC) It's called ORD() in many languages (since the character set / language / font may not be ASCII, but the idea is the same).
[7] [8] A detailed survey of indexing techniques that allows one to find an arbitrary substring in a text is given by Navarro et al. [7] A computational survey of dictionary methods (i.e., methods that permit finding all dictionary words that approximately match a search pattern) is given by Boytsov.
The total length of all the strings on all of the edges in the tree is (), but each edge can be stored as the position and length of a substring of S, giving a total space usage of () computer words. The worst-case space usage of a suffix tree is seen with a fibonacci word , giving the full 2 n {\displaystyle 2n} nodes.