Search results
Results from the WOW.Com Content Network
The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.
The Doppler effect (with arbitrary direction) also modifies the perceived source intensity: this can be expressed concisely by the fact that source strength divided by the cube of the frequency is a Lorentz invariant [p 6] [note 2] This implies that the total radiant intensity (summing over all frequencies) is multiplied by the fourth power of ...
The "direction of wave propagation" is the direction of a wave's energy flow, and the direction that a small wave packet will move, i.e. the direction of the group velocity. For light waves in vacuum, this is also the direction of the Poynting vector. On the other hand, the wave vector points in the direction of phase velocity.
The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
a the wave amplitude of each frequency component in metres, k 1 and k 2 the wave number of each wave component, in radians per metre, and; ω 1 and ω 2 the angular frequency of each wave component, in radians per second. Both ω 1 and k 1, as well as ω 2 and k 2, have to satisfy the dispersion relation:
A particular case is the thermal Doppler broadening due to the thermal motion of the particles. Then, the broadening depends only on the frequency of the spectral line, the mass of the emitting particles, and their temperature , and therefore can be used for inferring the temperature of an emitting (or absorbing) body being spectroscopically ...
He did not demand that each component of 3B satisfy equation ; instead he regenerated the equation using a Lorentz-invariant action, via the principle of least action, and application of Lorentz group theory. [4] [5] Majorana produced other important contributions that were unpublished, including wave equations of various dimensions (5, 6, and 16).
The photoacoustic Doppler effect is a type of Doppler effect that occurs when an intensity modulated light wave induces a photoacoustic wave on moving particles with a specific frequency. The observed frequency shift is a good indicator of the velocity of the illuminated moving particles. A potential biomedical application is measuring blood flow.