enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]

  3. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    The wider applicability and increased robustness of non-parametric tests comes at a cost: in cases where a parametric test's assumptions are met, non-parametric tests have less statistical power. In other words, a larger sample size can be required to draw conclusions with the same degree of confidence.

  4. Parametric statistics - Wikipedia

    en.wikipedia.org/wiki/Parametric_statistics

    Parametric statistical methods are used to compute the 2.33 value above, given 99 independent observations from the same normal distribution. A non-parametric estimate of the same thing is the maximum of the first 99 scores. We don't need to assume anything about the distribution of test scores to reason that before we gave the test it was ...

  5. Category:Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Category:Nonparametric...

    Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics. Nonparametric models differ from parametric models in that the model structure is ...

  6. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    That is, no parametric equation is assumed for the relationship between predictors and dependent variable. Nonparametric regression requires larger sample sizes than regression based on parametric models because the data must supply the model structure as well as the parameter estimates.

  7. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    Parametric models make "specific assumptions with regard to one or more of the population parameters that characterize the underlying distribution(s)". [3] Non-parametric models "typically involve fewer assumptions of structure and distributional form [than parametric models] but usually contain strong assumptions about independencies". [4]

  8. Parametric model - Wikipedia

    en.wikipedia.org/wiki/Parametric_model

    Parametric models are contrasted with the semi-parametric, semi-nonparametric, and non-parametric models, all of which consist of an infinite set of "parameters" for description. The distinction between these four classes is as follows: [citation needed] in a "parametric" model all the parameters are in finite-dimensional parameter spaces;

  9. Identifiability - Wikipedia

    en.wikipedia.org/wiki/Identifiability

    If the distributions are defined in terms of the probability density functions (pdfs), then two pdfs should be considered distinct only if they differ on a set of non-zero measure (for example two functions ƒ 1 (x) = 1 0 ≤ x < 1 and ƒ 2 (x) = 1 0 ≤ x ≤ 1 differ only at a single point x = 1 — a set of measure zero — and thus cannot ...