Search results
Results from the WOW.Com Content Network
Oceanic crust is continuously being created at mid-ocean ridges. As continental plates diverge at these ridges, magma rises into the upper mantle and crust. As the continental plates move away from the ridge, the newly formed rocks cool and start to erode with sediment gradually building up on top of them.
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s. The processes that result in plates and shape Earth's crust are called tectonics. Tectonic plates also occur ...
Marine geological studies were of extreme importance in providing the critical evidence for sea floor spreading and plate tectonics in the years following World War II. The deep ocean floor is the last essentially unexplored frontier and detailed mapping in support of economic ( petroleum and metal mining ), natural disaster mitigation, and ...
The plate itself features an asymmetrical morphology, configured in an inverted U-shape. The arc-arc collision zone of the Molucca Sea plate is characterized as a thick, low velocity layer, which is highly variable in density. [3] [6] The variable in density of the Molucca Sea plate led to different subduction velocities on the two sides. [3]
Within the Trobriand plate is the unigue to today's earth, the youngest (7–5 million year old) metamorphic core complexes formed of sedimentary rocks that have been subject to high and ultra–high–pressure, as well as gneissic domes that are being rapid emplaced at between 1–2 cm/year (0.39–0.79 in/year) vertically.
The lithosphere is divided into tectonic plates that are continuously being created or consumed at plate boundaries. Accretion occurs as mantle is added to the growing edges of a plate, associated with seafloor spreading. Upwelling beneath the spreading centers is a shallow, rising component of mantle convection and in most cases not directly ...