Search results
Results from the WOW.Com Content Network
The matching problem can be generalized by assigning weights to edges in G and asking for a set M that produces a matching of maximum (minimum) total weight: this is the maximum weight matching problem. This problem can be solved by a combinatorial algorithm that uses the unweighted Edmonds's algorithm as a subroutine. [6]
If there are multiple maximum cliques, one of them may be chosen arbitrarily. [14] In the weighted maximum clique problem, the input is an undirected graph with weights on its vertices (or, less frequently, edges) and the output is a clique with maximum total weight. The maximum clique problem is the special case in which all weights are equal ...
In this graph, the widest path from Maldon to Feering has bandwidth 29, and passes through Clacton, Tiptree, Harwich, and Blaxhall. In graph algorithms, the widest path problem is the problem of finding a path between two designated vertices in a weighted graph, maximizing the weight of the minimum-weight edge in the path.
Level 3: a node for each task. There is an arc from each agent i to each task j, with the corresponding cost, and capacity 1. Level 4: One sink-node t. There is an arc from each task to t, with cost 0 and capacity d j. An integral maximum flow of minimum cost can be found in polynomial time; see network flow problem.
An arborescence of graph G is a directed tree of G which contains a directed path from a specified node L to each node of a subset V′ of V \{L}. Node L is called the root of arborescence. An arborescence is a spanning arborescence if V′ = V \{L}. MBST in this case is a spanning arborescence with the minimum bottleneck edge.
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
The most common problem being solved is the 0-1 knapsack problem, which restricts the number of copies of each kind of item to zero or one. Given a set of items numbered from 1 up to , each with a weight and a value , along with a maximum weight capacity ,
Common to all versions are a set of n items, with each item having an associated profit p j and weight w j. The binary decision variable x j is used to select the item. The objective is to pick some of the items, with maximal total profit, while obeying that the maximum total weight of the chosen items must not exceed W .