Search results
Results from the WOW.Com Content Network
P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...
In mathematics, inverse mapping theorem may refer to: the inverse function theorem on the existence of local inverses for functions with non-singular derivatives the bounded inverse theorem on the boundedness of the inverse for invertible bounded linear operators on Banach spaces
For / one gets the inverse mapping defined by . In Euclidean geometry homotheties are the similarities that fix a point and either preserve (if k > 0 {\displaystyle k>0} ) or reverse (if k < 0 {\displaystyle k<0} ) the direction of all vectors.
For example, the inverse of a cubic function with a local maximum and a local minimum has three branches (see the adjacent picture). The arcsine is a partial inverse of the sine function. These considerations are particularly important for defining the inverses of trigonometric functions. For example, the sine function is not one-to-one, since
In mathematics, an isomorphism is a structure-preserving mapping (a morphism) between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is derived from Ancient Greek ἴσος (isos) 'equal' and μορφή (morphe) 'form, shape'.
the inverse function is continuous (is an open mapping). A homeomorphism is sometimes called a bicontinuous function. If such a function exists, and are homeomorphic. A self-homeomorphism is a homeomorphism from a topological space onto itself.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
From the definition, it follows that any isomorphism : will map the identity element of to the identity element of , =, that it will map inverses to inverses, = (), and more generally, th powers to th powers, = (), and that the inverse map : is also a group isomorphism.