enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heaviside cover-up method - Wikipedia

    en.wikipedia.org/wiki/Heaviside_cover-up_method

    The Heaviside cover-up method, named after Oliver Heaviside, is a technique for quickly determining the coefficients when performing the partial-fraction expansion of a rational function in the case of linear factors. [1] [2] [3] [4]

  3. Equating coefficients - Wikipedia

    en.wikipedia.org/wiki/Equating_coefficients

    In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term.

  4. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    In the twentieth century work by Axel Thue, [6] Carl Siegel, [7] and Klaus Roth [8] reduced the exponent in Liouville's work from d + ε to d/2 + 1 + ε, and finally, in 1955, to 2 + ε. This result, known as the Thue–Siegel–Roth theorem , is ostensibly the best possible, since if the exponent 2 + ε is replaced by just 2 then the result is ...

  5. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    In mathematics, Descartes' rule of signs, described by René Descartes in his La Géométrie, counts the roots of a polynomial by examining sign changes in its coefficients. The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference ...

  7. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  8. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In the polynomial + the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).

  9. P-recursive equation - Wikipedia

    en.wikipedia.org/wiki/P-recursive_equation

    In mathematics a P-recursive equation is a linear equation of sequences where the coefficient sequences can be represented as polynomials. P-recursive equations are linear recurrence equations (or linear recurrence relations or linear difference equations) with polynomial coefficients.