enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5, which is d. This holds in general.

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]

  4. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.

  5. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  6. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    The exponent of the group, that is, the least common multiple of the orders in the cyclic groups, is given by the Carmichael function (sequence A002322 in the OEIS). In other words, λ ( n ) {\displaystyle \lambda (n)} is the smallest number such that for each a coprime to n , a λ ( n ) ≡ 1 ( mod n ) {\displaystyle a^{\lambda (n)}\equiv 1 ...

  7. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  8. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.

  9. Reduced residue system - Wikipedia

    en.wikipedia.org/wiki/Reduced_residue_system

    Every number in a reduced residue system modulo n is a generator for the additive group of integers modulo n. A reduced residue system modulo n is a group under multiplication modulo n . If { r 1 , r 2 , ... , r φ( n ) } is a reduced residue system modulo n with n > 2, then ∑ r i ≡ 0 mod n {\displaystyle \sum r_{i}\equiv 0\!\!\!\!\mod n} .