Search results
Results from the WOW.Com Content Network
Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs (temporal summation).
The compound muscle action potential (CMAP) or compound motor action potential is an electrodiagnostic medicine investigation (electrical study of muscle function). The CMAP idealizes the summation of a group of almost simultaneous action potentials from several muscle fibers in the same area.
In neurophysiology, the Compound action potential (or CAP) refers to various evoked potentials representing the summation of synchronized individual action potentials generated by a group of neurons or muscle fibers in response to a stimulus. [1]
Signal transmission from nerve to muscle at the motor end plate. The neuromuscular junction is the synapse that is formed between an alpha motor neuron (α-MN) and the skeletal muscle fiber. In order for a muscle to contract, an action potential is first propagated down a nerve until it reaches the axon terminal of the motor neuron.
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. [1] It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. [2] Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy.
The compound muscle action potential (CMAP) size is found using supramaximal stimulation of the motor nerve to the muscle or muscle group (similar to a nerve conduction study). It is recorded using surface electrodes. This is representative of the sum of the surface detected motor unit action potentials from muscles innervated by that nerve.
The gastrocnemius muscle is heterogeneous, composed of both "red" and "pale" muscle, and thus containing fast-twitch high force fibers. Henneman's and colleagues took advantage of the differences between the soleus and gastrocnemius muscles to show that the neurons innervating the soleus muscle:
(b) A functional electrical stimulation system injects electrical current into the cell. (c) The intact but dormant axon receives the stimulus and propagates an action potential to (d) the neuromuscular junction. (e) The corresponding muscle fibers contract and generate (f) muscle force. (g) A train of negative pulses is produced.