Search results
Results from the WOW.Com Content Network
Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.
Figure 2: A paraboloid constrained along two intersecting lines. Figure 3: Contour map of Figure 2. The method of Lagrange multipliers can be extended to solve problems with multiple constraints using a similar argument. Consider a paraboloid subject to two line constraints that intersect at a single point. As the only feasible solution, this ...
Although the first derivative (3x 2) is 0 at x = 0, this is an inflection point. (2nd derivative is 0 at that point.) Unique global maximum at x = e. (See figure at right) x −x: Unique global maximum over the positive real numbers at x = 1/e. x 3 /3 − x: First derivative x 2 − 1 and second derivative 2x.
The calculus of variations is concerned with the maxima or minima (collectively called extrema) of functionals. A functional maps functions to scalars, so functionals have been described as "functions of functions." Functionals have extrema with respect to the elements of a given function space defined over a given domain.
The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.
These methods are iterative: they start with an initial point, and then proceed to points that are supposed to be closer to the optimal point, using some update rule. There are three kinds of update rules: [2]: 5.1.2 Zero-order routines - use only the values of the objective function and constraint functions at the current point;
Alternatively, if the constraints are all equality constraints and are all linear, they can be solved for some of the variables in terms of the others, and the former can be substituted out of the objective function, leaving an unconstrained problem in a smaller number of variables.
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.