Search results
Results from the WOW.Com Content Network
Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed. The static qualifier differentiates SRAM from dynamic random-access memory (DRAM):
Volatile memory is computer memory that requires power to maintain the stored information. Most modern semiconductor volatile memory is either static RAM (SRAM) or dynamic RAM (DRAM). [a] DRAM dominates for desktop system memory. SRAM is used for CPU cache. SRAM is also found in small embedded systems requiring little memory.
The two main types of volatile random-access semiconductor memory are static random-access memory (SRAM) and dynamic random-access memory (DRAM). Non-volatile RAM has also been developed [3] and other types of non-volatile memories allow random access for read operations, but either do not allow write operations or have other kinds of limitations.
DRAM stores each bit of information in a different capacitor within the integrated circuit. DRAM chips need just one single capacitor and one transistor to store each bit of information. This makes it space-efficient and inexpensive. [2] The main advantage of static RAM (SRAM) is that it is much faster than dynamic RAM.
A piece of information can be handled by any computer or device whose storage space is large enough to accommodate the binary representation of the piece of information, or simply data. For example, the complete works of Shakespeare, about 1250 pages in print, can be stored in about five megabytes (40 million bits) with one byte per character.
The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory (such as EPROM, EEPROM and flash memory) uses floating-gate memory cells, which consist of a single floating-gate transistor per ...
Memory architecture describes the methods used to implement electronic computer data storage in a manner that is a combination of the fastest, most reliable, most durable, and least expensive way to store and retrieve information. Depending on the specific application, a compromise of one of these requirements may be necessary in order to ...
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. [1] A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations.