Search results
Results from the WOW.Com Content Network
A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.
The following was shown by Michael Gage and Richard S. Hamilton as an application of Hamilton's general existence theorem for parabolic geometric flows. [ 1 ] [ 2 ] Let M {\displaystyle M} be a compact smooth manifold , let ( M ′ , g ) {\displaystyle (M',g)} be a complete smooth Riemannian manifold , and let f : M → M ′ {\displaystyle f:M ...
Illustration of gradient descent on a series of level sets. Gradient descent is based on the observation that if the multi-variable function is defined and differentiable in a neighborhood of a point , then () decreases fastest if one goes from in the direction of the negative gradient of at , ().
For any smooth function f on a Riemannian manifold (M, g), the gradient of f is the vector field ∇f such that for any vector field X, (,) =, that is, ((),) = (), where g x ( , ) denotes the inner product of tangent vectors at x defined by the metric g and ∂ X f is the function that takes any point x ∈ M to the directional derivative of f ...
In the special case that the statistical model is an exponential family, it is possible to induce the statistical manifold with a Hessian metric (i.e a Riemannian metric given by the potential of a convex function). In this case, the manifold naturally inherits two flat affine connections, as well as a canonical Bregman divergence. Historically ...
Certain geometric flows arise as the gradient flow associated with a functional on a manifold which has a geometric interpretation, usually associated with some extrinsic or intrinsic curvature. Such flows are fundamentally related to the calculus of variations, and include mean curvature flow and Yamabe flow.
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.