Search results
Results from the WOW.Com Content Network
For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.
The gyrotron is a type of free-electron maser that generates high-frequency electromagnetic radiation by stimulated cyclotron resonance of electrons moving through a strong magnetic field. [4] [5] It can produce high power at millimeter wavelengths because, as a fast-wave device, its dimensions can be much larger than the wavelength of the ...
10 20 1.4×10 20 J Total energy released in the 1815 Mount Tambora eruption [209] 2.33×10 20 J Kinetic energy of a carbonaceous chondrite meteor 1 km in diameter striking Earth's surface at 20 km/s. [210] Such an impact occurs every ~500,000 years. [211] 2.4×10 20 J Total latent heat energy released by Hurricane Katrina [212] 5×10 20 J
An FM radio station transmitting at 100 MHz emits photons with an energy of about 4.1357 × 10 −7 eV. This minuscule amount of energy is approximately 8 × 10 −13 times the electron's mass (via mass–energy equivalence). Very-high-energy gamma rays have photon energies of 100 GeV to over 1 PeV (10 11 to 10 15 electronvolts) or 16 nJ to 160 ...
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
An electrical room is a technical room or space in a building dedicated to electrical equipment. Its size is usually proportional to the size of the building; large buildings may have a main electrical room and subsidiary electrical rooms. Electrical equipment may be for power distribution equipment, or for communications equipment. [1]
Electrons can take on any energy within an unfilled band. At first this appears to be an exception to the requirement for energy levels. However, as shown in band theory, energy bands are actually made up of many discrete energy levels which are too close together to resolve. Within a band the number of levels is of the order of the number of ...
For example, an electron and a positron, each with a mass of 0.511 MeV/c 2, can annihilate to yield 1.022 MeV of energy. A proton has a mass of 0.938 GeV/c 2. In general, the masses of all hadrons are of the order of 1 GeV/c 2, which makes the GeV/c 2 a convenient unit of mass for particle physics: [4]