enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    Since lines AC and BD are parallel, likewise for AD and CB, the quadrilateral ACBD is a parallelogram. Since lines AB and CD, the diagonals of the parallelogram, are both diameters of the circle and therefore have equal length, the parallelogram must be a rectangle. All angles in a rectangle are right angles.

  3. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Rectangle – A parallelogram with four angles of equal size (right angles).; Rhombus – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a rhomboid but this term is not used in modern mathematics.

  4. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    That is, it has an inscribed circle that is tangent to all four sides. A rhombus. Each angle marked with a black dot is a right angle. The height h is the perpendicular distance between any two non-adjacent sides, which equals the diameter of the circle inscribed. The diagonals of lengths p and q are the red dotted line segments.

  5. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    [2] [3] A kite may also be called a dart, [4] particularly if it is not convex. [5] [6] Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and ...

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Then there holds: the straight lines NK and ML intersect at point P that is located on the side AB; the straight lines NL and KM intersect at point Q that is located on the side CD. Points P and Q are called "Pascal points" formed by circle ω on sides AB and CD. [50] [51] [52]

  7. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    The circle meets the angle at two points: one on each leg. Using each of these points as a center, draw two circles of the same size. The intersection of the circles (two points) determines a line that is the angle bisector. The proof of the correctness of this construction is fairly intuitive, relying on the symmetry of the problem.

  8. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    In Möbius or inversive geometry, lines are viewed as circles through a point "at infinity" and for any line and any circle, there is a Möbius transformation which maps one to the other. In Möbius geometry, tangency between a line and a circle becomes a special case of tangency between two circles.

  9. Parallel projection - Wikipedia

    en.wikipedia.org/wiki/Parallel_projection

    Parallel lines are mapped on parallel lines, or on a pair of points (if they are parallel to ). The ratio of the length of two line segments on a line stays unchanged. As a special case, midpoints are mapped on midpoints. The length of a line segment parallel to the projection plane remains unchanged. The length of any line segment is shortened ...