enow.com Web Search

  1. Including results for

    joule thomson inversion point

Search results

  1. Results from the WOW.Com Content Network
  2. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/JouleThomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  3. Inversion temperature - Wikipedia

    en.wikipedia.org/wiki/Inversion_temperature

    This temperature change is known as the Joule–Thomson effect, and is exploited in the liquefaction of gases. Inversion temperature depends on the nature of the gas. For a van der Waals gas we can calculate the enthalpy using statistical mechanics as

  4. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    It yields an analytic analysis of the Joule–Thomson coefficient and associated inversion curve, which were instrumental in the development of the commercial liquefaction of gases. It shows that the specific heat at constant volume c v {\displaystyle c_{v}} is a function of T {\displaystyle T} only.

  5. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    For real gasses, the molecules do interact via attraction or repulsion depending on temperature and pressure, and heating or cooling does occur. This is known as the Joule–Thomson effect. For reference, the Joule–Thomson coefficient μ JT for air at room temperature and sea level is 0.22 °C/bar. [7]

  6. Joule expansion - Wikipedia

    en.wikipedia.org/wiki/Joule_expansion

    This type of expansion is named after James Prescott Joule who used this expansion, in 1845, in his study for the mechanical equivalent of heat, but this expansion was known long before Joule e.g. by John Leslie, in the beginning of the 19th century, and studied by Joseph Louis Gay-Lussac in 1807 with similar results as obtained by Joule. [1] [2]

  7. Joule effect - Wikipedia

    en.wikipedia.org/wiki/Joule_effect

    The Joule–Thomson effect, the temperature change of a gas when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. The Gough–Joule effect or the Gow–Joule effect, which is the tendency of elastomers to contract if heated while they are under tension.

  8. Isoenthalpic–isobaric ensemble - Wikipedia

    en.wikipedia.org/wiki/Isoenthalpic–isobaric...

    Using isoenthalpic-isobaric ensemble of Lennard-Jones fluid, it was shown [4] that the Joule–Thomson coefficient and inversion curve can be computed directly from a single molecular dynamics simulation.

  9. File:Isenthalpic contours for temperature versus pressure ...

    en.wikipedia.org/wiki/File:Isenthalpic_contours...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more