Search results
Results from the WOW.Com Content Network
The TSH, in turn, stimulates the thyroid to produce thyroid hormone until levels in the blood return to normal. Thyroid hormone exerts negative feedback control over the hypothalamus as well as anterior pituitary, thus controlling the release of both TRH from hypothalamus and TSH from anterior pituitary gland. [2]
TSH is secreted throughout life but particularly reaches high levels during the periods of rapid growth and development, as well as in response to stress. The hypothalamus, in the base of the brain, produces thyrotropin-releasing hormone (TRH). TRH stimulates the anterior pituitary gland to produce TSH.
The TSH in turn is under feedback control by the thyroid hormones T4 and T3. When the level of TSH is too high, they feed back on the brain to shut down the secretion of TRH. Synthetic TRH is also used by physicians as a test of TSH reserve in the pituitary gland as it should stimulate the release of TSH and prolactin from this gland.
TSH levels are determined by a classic negative feedback system in which high levels of T3 and T4 suppress the production of TSH, and low levels of T3 and T4 increase the production of TSH. TSH levels are thus often used by doctors as a screening test, where the first approach is to determine whether TSH is elevated, suppressed, or normal. [25]
Thyroid stimulating hormone (TSH) is produced by the pituitary gland, another hormone-producing organ in the head. This in turn causes the thyroid to produce T3 and T4, which play a role in the ...
Thyroid hormones (T 4 and T 3) are produced by the follicular cells of the thyroid gland and are regulated by TSH made by the thyrotropes of the anterior pituitary gland. The effects of T 4 in vivo are mediated via T 3 (T 4 is converted to T 3 in target tissues). T 3 is three to five times more active than T 4.
In posterior pituitary we have hormones that control absorption of water and oxytocin. Anterior hypophysis, neurosecretory cells which release hormones. There is a pituitary portal system, with which the hormones are transported. These hormones are prolactin, growth hormone, TSH, adrenocorticotropic hormone, FSH and LH.
The thyrotropin receptor (TSH receptor) is the antigen for TSH receptor antibodies (TRAbs). It is a seven transmembrane G protein-coupled receptor that is involved in thyroid hormone signalling. TRAbs are grouped depending on their effects on receptor signalling; activating antibodies (associated with hyperthyroidism), blocking antibodies ...