enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  3. Canonical normal form - Wikipedia

    en.wikipedia.org/wiki/Canonical_normal_form

    In Boolean algebra, any Boolean function can be expressed in the canonical disjunctive normal form , [1] minterm canonical form, or Sum of Products (SoP or SOP) as a disjunction (OR) of minterms. The De Morgan dual is the canonical conjunctive normal form ( CCNF ), maxterm canonical form , or Product of Sums ( PoS or POS ) which is a ...

  4. Boolean algebra (structure) - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra_(structure)

    A Boolean algebra is a set A, equipped with two binary operations ∧ (called "meet" or "and"), ∨ (called "join" or "or"), a unary operation ¬ (called "complement" or "not") and two elements 0 and 1 in A (called "bottom" and "top", or "least" and "greatest" element, also denoted by the symbols ⊥ and āŠ¤, respectively), such that for all elements a, b and c of A, the following axioms hold: [2]

  5. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    Corner quotes, also called “Quine quotes”; for quasi-quotation, i.e. quoting specific context of unspecified (“variable”) expressions; [3] also used for denoting Gödel number; [4] for example “āŒœGāŒ” denotes the Gödel number of G. (Typographical note: although the quotes appears as a “pair” in unicode (231C and 231D), they ...

  6. Boolean algebra - Wikipedia

    en.wikipedia.org/wiki/Boolean_algebra

    A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, where a Boolean term is defined as an expression built up from variables and the constants 0 and 1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean operations such as ⊕, →, and ≡ ...

  7. Literal (mathematical logic) - Wikipedia

    en.wikipedia.org/wiki/Literal_(mathematical_logic)

    In Boolean functions, each separate occurrence of a variable, either in inverse or uncomplemented form, is a literal. For example, if A {\displaystyle A} , B {\displaystyle B} and C {\displaystyle C} are variables then the expression A ¯ B C {\displaystyle {\bar {A}}BC} contains three literals and the expression A ¯ C + B ¯ C ...

  8. Karnaugh map - Wikipedia

    en.wikipedia.org/wiki/Karnaugh_map

    The POS expression gives a complement of the function (if F is the function so its complement will be F'). [10] Karnaugh maps can also be used to simplify logic expressions in software design. Boolean conditions, as used for example in conditional statements , can get very complicated, which makes the code difficult to read and to maintain.

  9. Boolean function - Wikipedia

    en.wikipedia.org/wiki/Boolean_function

    In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [ 1 ] [ 2 ] Alternative names are switching function , used especially in older computer science literature, [ 3 ] [ 4 ] and truth function (or logical function) , used in logic .