enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [ 1 ]

  3. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  4. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, ... It supports CNN, RCNN, LSTM and fully-connected neural network designs ...

  5. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    Inception [1] is a family of convolutional neural network (CNN) for computer vision, introduced by researchers at Google in 2014 as GoogLeNet (later renamed Inception v1).). The series was historically important as an early CNN that separates the stem (data ingest), body (data processing), and head (prediction), an architectural design that persists in all modern

  6. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    A different reformulation of neural networks allows tensors to express the convolution layers of a neural network. A convolutional layer has multiple inputs, each of which is a spatial structure such as an image or volume. The inputs are convolved by filtering before being passed to the next layer. A typical use is to perform feature detection ...

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  8. Machine learning in video games - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in_video...

    The extensive training time of neural network based approaches can also take weeks on these powerful machines. [ 4 ] The problem of effectively training ANN based models extends beyond powerful hardware environments; finding a good way to represent data and learn meaningful things from it is also often a difficult problem.

  9. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural networks: