Search results
Results from the WOW.Com Content Network
An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.
Step 3: Select the equation with the highest R 2 and lowest standard errors to represent heteroscedasticity. Step 4: Perform a t-test on the equation selected from step 3 on γ 1 . If γ 1 is statistically significant, reject the null hypothesis of homoscedasticity.
White test is a statistical test that establishes whether the variance of the errors in a regression model is constant: that is for homoskedasticity. This test, and an estimator for heteroscedasticity-consistent standard errors , were proposed by Halbert White in 1980. [ 1 ]
The parametric Goldfeld–Quandt test offers a simple and intuitive diagnostic for heteroskedastic errors in a univariate or multivariate regression model. However some disadvantages arise under certain specifications or in comparison to other diagnostics, namely the Breusch–Pagan test , as the Goldfeld–Quandt test is somewhat of an ad hoc ...
A Newey–West estimator is used in statistics and econometrics to provide an estimate of the covariance matrix of the parameters of a regression-type model where the standard assumptions of regression analysis do not apply. [1]
Suppose that we estimate the regression model = + +, and obtain from this fitted model a set of values for ^, the residuals. Ordinary least squares constrains these so that their mean is 0 and so, given the assumption that their variance does not depend on the independent variables, an estimate of this variance can be obtained from the average of the squared values of the residuals.
Heteroscedasticity-consistent standard errors (HCSE), while still biased, improve upon OLS estimates. [2] HCSE is a consistent estimator of standard errors in regression models with heteroscedasticity. This method corrects for heteroscedasticity without altering the values of the coefficients.
If a visual examination suggests, for example, the possible presence of heteroscedasticity (a relationship between the variance of the model errors and the size of an independent variable's observations), then statistical tests can be performed to confirm or reject this hunch; if it is confirmed, different modeling procedures are called for.