enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    Test crosses are only useful if dominance is complete. Incomplete dominance is when the dominant allele and recessive allele come together to form a blend of the two phenotypes in the offspring. Test crosses are also not applicable with codominant genes, where both phenotypes of a heterozygote trait will be expressed.

  3. Dominance (genetics) - Wikipedia

    en.wikipedia.org/wiki/Dominance_(genetics)

    Autosomal dominant and autosomal recessive inheritance, the two most common Mendelian inheritance patterns. An autosome is any chromosome other than a sex chromosome.. In genetics, dominance is the phenomenon of one variant of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome.

  4. Haploinsufficiency - Wikipedia

    en.wikipedia.org/wiki/Haploinsufficiency

    Haploinsufficiency is the standard explanation for dominant deleterious alleles. [ clarification needed ] In the alternative case of haplosufficiency , the loss-of-function allele behaves as above, but the single standard allele in the heterozygous genotype produces sufficient gene product to produce the same, standard phenotype as seen in the ...

  5. Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Mendelian_inheritance

    In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.

  6. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    In cases of intermediate inheritance due to incomplete dominance, the principle of dominance discovered by Mendel does not apply.Nevertheless, the principle of uniformity works, as all offspring in the F 1-generation have the same genotype and same phenotype.

  7. X-linked dominant inheritance - Wikipedia

    en.wikipedia.org/wiki/X-linked_dominant_inheritance

    The difference between dominant and recessive inheritance patterns also plays a role in determining the chances of a child inheriting an X-linked disorder from their parentage. [ citation needed ] X-linked dominant disorders tend to affect females more often because they tend to be developmentally fatal in males.

  8. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

  9. Overdominance - Wikipedia

    en.wikipedia.org/wiki/Overdominance

    Overdominance is a phenomenon in genetics where the phenotype of the heterozygote lies outside the phenotypical range of both homozygous parents. Overdominance can also be described as heterozygote advantage regulated by a single genomic locus, wherein heterozygous individuals have a higher fitness than homozygous individuals.