enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    The magnitude of the unit quaternion will be unity, corresponding to a hypersphere of unit radius. The vector part of a unit quaternion represents the radius of the 2-sphere corresponding to the axis of rotation, and its magnitude is the sine of half the angle of rotation.

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Like rotation matrices, quaternions must sometimes be renormalized due to rounding errors, to make sure that they correspond to valid rotations. The computational cost of renormalizing a quaternion, however, is much less than for normalizing a 3 × 3 matrix. Quaternions also capture the spinorial character of rotations in three dimensions.

  4. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    which is a quaternion of unit length (or versor) since ‖ ‖ = + + + = Most importantly, the above equations for composition of rotations are precisely the equations for multiplication of quaternions =. In other words, the group of unit quaternions with multiplication, modulo the negative sign, is isomorphic to the group of rotations with ...

  5. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    The field of complex numbers is also isomorphic to three subsets of quaternions.) [22] A quaternion that equals its vector part is called a vector quaternion. The set of quaternions is a 4-dimensional vector space over the real numbers, with { 1 , i , j , k } {\displaystyle \left\{1,\mathbf {i} ,\mathbf {j} ,\mathbf {k} \right\}} as a basis ...

  6. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    The conjugate of that eigenvalue is also unity, yielding a pair of eigenvectors which define a fixed plane, and so the rotation is simple. In quaternion notation, a proper (i.e., non-inverting) rotation in SO(4) is a proper simple rotation if and only if the real parts of the unit quaternions Q L and Q R are equal in magnitude and have the same ...

  7. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    where q is the versor, q −1 is its inverse, and x is the vector treated as a quaternion with zero scalar part. The quaternion can be related to the rotation vector form of the axis angle rotation by the exponential map over the quaternions, = /, where v is the rotation vector treated as a quaternion.

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Now every quaternion component appears multiplied by two in a term of degree two, and if all such terms are zero what is left is an identity matrix. This leads to an efficient, robust conversion from any quaternion – whether unit or non-unit – to a 3 × 3 rotation matrix. Given:

  9. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    The intuition of the above formula is that the first term scales the vector down, while the second skews it (via vector addition) toward the new rotational position.The third term re-adds the height (relative to ) that was lost by the first term.