enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ordinal regression - Wikipedia

    en.wikipedia.org/wiki/Ordinal_regression

    In machine learning, alternatives to the latent-variable models of ordinal regression have been proposed. An early result was PRank, a variant of the perceptron algorithm that found multiple parallel hyperplanes separating the various ranks; its output is a weight vector w and a sorted vector of K −1 thresholds θ , as in the ordered logit ...

  3. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In the more general multiple regression model, there are independent variables: = + + + +, where is the -th observation on the -th independent variable.If the first independent variable takes the value 1 for all , =, then is called the regression intercept.

  6. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...

  7. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The model is usually denoted ARMA(p, q), where p is the order of AR and q is the order of MA. The general ARMA model was described in the 1951 thesis of Peter Whittle , Hypothesis testing in time series analysis , and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins .

  8. Isotonic regression - Wikipedia

    en.wikipedia.org/wiki/Isotonic_regression

    Isotonic regression is also used in probabilistic classification to calibrate the predicted probabilities of supervised machine learning models. [2] Isotonic regression for the simply ordered case with univariate , has been applied to estimating continuous dose-response relationships in fields such as anesthesiology and toxicology.

  9. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Conditional logistic regression is an extension of logistic regression that allows one to account for stratification and matching. Its main field of application is observational studies and in particular epidemiology. It was devised in 1978 by Norman Breslow, Nicholas Day, Katherine Halvorsen, Ross L. Prentice and C. Sabai. [1]