enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rule of product - Wikipedia

    en.wikipedia.org/wiki/Rule_of_product

    In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the intuitive idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions. [1] [2]

  3. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    By expanding the product on the left-hand side, equation follows. To prove the inclusion–exclusion principle for the cardinality of sets, sum the equation over all x in the union of A 1, ..., A n. To derive the version used in probability, take the expectation in . In general, integrate the equation with respect to μ. Always use linearity in ...

  4. Combinatorics - Wikipedia

    en.wikipedia.org/wiki/Combinatorics

    Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

  5. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  6. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    The equality ((+)) = (()) can also be understood as an equivalence of different counting problems: the number of k-tuples of non-negative integers whose sum is n equals the number of (n + 1)-tuples of non-negative integers whose sum is k − 1, which follows by interchanging the roles of bars and stars in the diagrams representing configurations.

  7. George Osborn (mathematician) - Wikipedia

    en.wikipedia.org/wiki/George_Osborn_(Mathematician)

    Alongside his work in mathematics, Osborn took his time to study the New Testament owing to his grandfather Revenant George Osborn the president of the Methodist Conference in 1863 and 1881. [3] In addition to this, Osborn enjoyed reading Spanish literature and was an avid chess player up until his death on October 14, 1932.

  8. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...

  9. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.