enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coriolis frequency - Wikipedia

    en.wikipedia.org/wiki/Coriolis_frequency

    The rotation rate of the Earth (Ω = 7.2921 × 10 −5 rad/s) can be calculated as 2π / T radians per second, where T is the rotation period of the Earth which is one sidereal day (23 h 56 min 4.1 s). [2] In the midlatitudes, the typical value for is about 10 −4 rad/s.

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    Here, the function gives the mass density at each point (,,), is a vector perpendicular to the axis of rotation and extending from a point on the rotation axis to a point (,,) in the solid, and the integration is evaluated over the volume of the body . The moment of inertia of a flat surface is similar with the mass density being replaced by ...

  4. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    For free-floating (unattached) objects, the axis of rotation is commonly around its center of mass. Note the close relationship between the result for rotational energy and the energy held by linear (or translational) motion: E translational = 1 2 m v 2 {\displaystyle E_{\text{translational}}={\tfrac {1}{2}}mv^{2}}

  5. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).

  6. Mass flux - Wikipedia

    en.wikipedia.org/wiki/Mass_flux

    Mathematically, mass flux is defined as the limit =, where = = is the mass current (flow of mass m per unit time t) and A is the area through which the mass flows.. For mass flux as a vector j m, the surface integral of it over a surface S, followed by an integral over the time duration t 1 to t 2, gives the total amount of mass flowing through the surface in that time (t 2 − t 1): = ^.

  7. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...

  8. Mass flow rate - Wikipedia

    en.wikipedia.org/wiki/Mass_flow_rate

    A correct description of such an object requires the application of Newton's second law to the entire, constant-mass system consisting of both the object and its ejected mass. [7] Mass flow rate can be used to calculate the energy flow rate of a fluid: [8] ˙ = ˙, where is the unit mass energy of a system.

  9. Radius of gyration - Wikipedia

    en.wikipedia.org/wiki/Radius_of_gyration

    Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,