enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Helix-turn-helix - Wikipedia

    en.wikipedia.org/wiki/Helix-turn-helix

    The helix-turn-helix motif is a DNA-binding motif. The recognition and binding to DNA by helix-turn-helix proteins is done by the two α helices, one occupying the N-terminal end of the motif, the other at the C-terminus. In most cases, such as in the Cro repressor, the second helix contributes most to DNA recognition, and hence it is often ...

  3. Molecular lesion - Wikipedia

    en.wikipedia.org/wiki/Molecular_lesion

    [14] 8-oxo-guanine (8-oxoG) is the most abundant and well characterized oxidative lesion, found in both RNA and DNA. Accumulation of 8-oxoG may cause dire damage within the mitochondria and is thought to be a key player in the aging process. [15] RNA oxidation has direct consequences in the production of proteins.

  4. Helicase - Wikipedia

    en.wikipedia.org/wiki/Helicase

    RecQ is a family of DNA helicase enzymes that are found in various organisms including bacteria, archaea, and eukaryotes (like humans). These enzymes play important roles in DNA metabolism during DNA replication, recombination, and repair. There are five known RecQ helicase proteins in humans: RecQ1, BLM, WRN, RecQ4, and RecQ5.

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    The two strands of DNA in a double helix can thus be pulled apart like a zipper, either by a mechanical force or high temperature. [27] As a result of this base pair complementarity, all the information in the double-stranded sequence of a DNA helix is duplicated on each strand, which is vital in DNA replication.

  6. Z-DNA - Wikipedia

    en.wikipedia.org/wiki/Z-DNA

    Z-DNA is one of the many possible double helical structures of DNA. It is a left-handed double helical structure in which the helix winds to the left in a zigzag pattern, instead of to the right, like the more common B-DNA form. Z-DNA is thought to be one of three biologically active double-helical structures along with A-DNA and B-DNA.

  7. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...

  8. Griffith's experiment - Wikipedia

    en.wikipedia.org/wiki/Griffith's_experiment

    While the bacteria had been killed, the DNA had survived the heating process and was taken up by the II-R strain bacteria. The III-S strain DNA contains the genes that form the smooth protective polysaccharide capsule. Equipped with this gene, the former II-R strain bacteria were now protected from the host's immune system and could kill the host.

  9. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    This build-up creates a torsional load that would eventually stop the replication fork. Topoisomerases are enzymes that temporarily break the strands of DNA, relieving the tension caused by unwinding the two strands of the DNA helix; topoisomerases (including DNA gyrase) achieve this by adding negative supercoils to the DNA helix. [42]