Search results
Results from the WOW.Com Content Network
The WLF equation is a consequence of time–temperature superposition (TTSP), which mathematically is an application of Boltzmann's superposition principle. It is TTSP, not WLF, that allows the assembly of a compliance master curve that spans more time, or frequency, than afforded by the time available for experimentation or the frequency range ...
where is the polymer's characteristic persistence length, is the Boltzmann constant, and is the absolute temperature. At finite temperatures, the end-to end distance of the polymer will be significantly shorter than the maximum length . This is caused by thermal fluctuations, which result in a coiled, random configuration of the undisturbed ...
Persistence length measurement of single stranded DNA is viable by various tools. Most of them have been done by incorporation of the worm-like chain model. For example, two ends of single stranded DNA were tagged by donor and acceptor dyes to measure average end to end distance which is represented as FRET efficiency.
As opposed to crystallographic scattering experiments, where the scatterer or "target" has very distinct order, which leads to well defined patterns (presenting Bragg peaks for example), the stochastic nature of polymer configurations and deformations (especially in a solution), gives rise to quite different results.
The physics of condensed matter is addressed in all its diversity, but the current activities can be loosely divided into three main topics, each one involving about thirty permanent researchers: New electronic states of matter [1] Physical phenomena with reduced dimensions [2] Soft matter and physics-biology interface [3]
The statistical approach to polymer physics is based on an analogy between polymer behavior and either Brownian motion or another type of a random walk, the self-avoiding walk. The simplest possible polymer model is presented by the ideal chain , corresponding to a simple random walk.
Derived from the word reptile, reptation suggests the movement of entangled polymer chains as being analogous to snakes slithering through one another. [2] Pierre-Gilles de Gennes introduced (and named) the concept of reptation into polymer physics in 1971 to explain the dependence of the mobility of a macromolecule on its length. Reptation is ...
The time–temperature superposition principle is a concept in polymer physics and in the physics of glass-forming liquids. [1] [2] [3] This superposition principle is used to determine temperature-dependent mechanical properties of linear viscoelastic materials from known properties at a reference temperature.