enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have /

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Consider a simple statistical model of a coin flip: a single parameter that expresses the "fairness" of the coin. The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two ...

  4. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    Just flip a coin once to decide whether to promote only the even ones or only the odd ones. Instead of (⁡) coin flips, there would only be (⁡) of them. Unfortunately, this gives the adversarial user a 50/50 chance of being correct upon guessing that all of the even numbered nodes (among the ones at level 1 or higher) are higher than level one.

  5. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes.

  6. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    A Bernoulli process is a finite or infinite sequence of independent random variables X 1, X 2, X 3, ..., such that . for each i, the value of X i is either 0 or 1;; for all values of , the probability p that X i = 1 is the same.

  7. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  8. Stochastic process - Wikipedia

    en.wikipedia.org/wiki/Stochastic_process

    The Bernoulli process, which can serve as a mathematical model for flipping a biased coin, is possibly the first stochastic process to have been studied. [81] The process is a sequence of independent Bernoulli trials, [ 82 ] which are named after Jacob Bernoulli who used them to study games of chance, including probability problems proposed and ...

  9. St. Petersburg paradox - Wikipedia

    en.wikipedia.org/wiki/St._Petersburg_paradox

    The St. Petersburg paradox or St. Petersburg lottery [1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...