Search results
Results from the WOW.Com Content Network
Thermal polymer decomposition. Thermal scanning probe lithography (t-SPL) is a form of scanning probe lithography [1] (SPL) whereby material is structured on the nanoscale using scanning probes, primarily through the application of thermal energy.
Thermochemical nanolithography (TCNL) or thermochemical scanning probe lithography (tc-SPL) is a scanning probe microscopy-based nanolithography technique which triggers thermally activated chemical reactions to change the chemical functionality or the phase of surfaces.
Template: Scanning probe microscopy. ... Print/export Download as PDF; Printable version; In other projects Wikidata item;
Scanning probe lithography [1] (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm. [ 2 ]
Template: Test sample values. 4 languages. ... Print/export Download as PDF; Printable version; In other projects Wikidata item;
Solid-solid conduction. Probe tip to sample. This is the transfer mechanism which yields the thermal scan. Liquid-liquid conduction. When scanning in non-zero humidity, a liquid meniscus forms between the tip and sample. Conduction can occur through this liquid drop. Gas conduction. Heat can be transferred through the edges of the probe tip to ...
Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope , an instrument for imaging surfaces at the atomic level.
Scanning Hall probe microscope (SHPM) is a variety of a scanning probe microscope which incorporates accurate sample approach and positioning of the scanning tunnelling microscope with a semiconductor Hall sensor. Developed in 1996 by Oral, Bending and Henini, [2] SHPM allows mapping the magnetic induction associated with a sample.