Search results
Results from the WOW.Com Content Network
Parfocal microscope objectives stay in focus when magnification is changed; i.e., if the microscope is switched from a lower power objective (e.g., 10×) to a higher power objective (e.g., 40×), the object stays in focus. Most modern bright-field microscopes are parfocal.
The oil is applied to the specimen (conventional microscope), and the stage is raised, immersing the objective in oil. (In inverted microscopes the oil is applied to the objective). The refractive indices of the oil and of the glass in the first lens element are nearly the same, which means that the refraction of light will be small upon ...
Two Leica oil immersion microscope objective lenses; left 100×, right 40×. The objective lens of a microscope is the one at the bottom near the sample. At its simplest, it is a very high-powered magnifying glass, with very short focal length. This is brought very close to the specimen being examined so that the light from the specimen comes ...
A compound microscope uses a lens close to the object being viewed to collect light (called the objective lens), which focuses a real image of the object inside the microscope. That image is then magnified by a second lens or group of lenses (called the eyepiece ) that gives the viewer an enlarged inverted virtual image of the object.
In both cases the numerical aperture of the objective is 1.49 and the refractive index of the medium 1.52. The wavelength of the emitted light is assumed to be 600 nm and, in case of the confocal microscope, that of the excitation light 500 nm with circular polarization. A section is cut to visualize the internal intensity distribution.
A bright-field microscope has many important parts including; the condenser, the objective lens, the ocular lens, the diaphragm, and the aperture. Some other pieces of the microscope that are commonly known are the arm, the head, the illuminator, the base, the stage, the adjusters, and the brightness adjuster.
Cone of light behind an achromatic doublet objective lens (A) without (red) and with (green) a Barlow lens optical element (B). The Barlow lens, named after Peter Barlow, is a type of diverging lens which, used in series with other optics in an optical system, increases the effective focal length of an optical system as perceived by all components that are after it in the system.
By virtue of the linearity property of optical non-coherent imaging systems, i.e., . Image(Object 1 + Object 2) = Image(Object 1) + Image(Object 2). the image of an object in a microscope or telescope as a non-coherent imaging system can be computed by expressing the object-plane field as a weighted sum of 2D impulse functions, and then expressing the image plane field as a weighted sum of the ...