enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Codes for electromagnetic scattering by spheres - Wikipedia

    en.wikipedia.org/wiki/Codes_for_electromagnetic...

    py_gmm G. Pellegrini [20] Python + Fortran A Python + Fortran 90 implementation of the Generalized Multiparticle Mie method, especially suited for plasmonics and near field computation. 2017 CELES A. Egel, L. Pattelli and G. Mazzamuto [21] MATLAB + CUDA Running on NVIDIA GPUs, with high performance for many spheres. 2020 QPMS M. Nečada [22] C ...

  3. Modified Newtonian dynamics - Wikipedia

    en.wikipedia.org/wiki/Modified_Newtonian_dynamics

    Here F N is the Newtonian force, m is the object's (gravitational) mass, a is its acceleration, μ (x) is an as-yet unspecified function (called the interpolating function), and a 0 is a new fundamental constant which marks the transition between the Newtonian and deep-MOND regimes. Agreement with Newtonian mechanics requires

  4. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In the spherical-coordinates example above, there are no cross-terms; the only nonzero metric tensor components are g rr = 1, g θθ = r 2 and g φφ = r 2 sin 2 θ. In his special theory of relativity, Albert Einstein showed that the distance ds between two spatial points is not constant, but depends on the motion of the observer.

  6. Effective potential - Wikipedia

    en.wikipedia.org/wiki/Effective_potential

    There are many useful features of the effective potential, such as . To find the radius of a circular orbit, simply minimize the effective potential with respect to , or equivalently set the net force to zero and then solve for : = After solving for , plug this back into to find the maximum value of the effective potential .

  7. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  8. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  9. Earth mover's distance - Wikipedia

    en.wikipedia.org/wiki/Earth_mover's_distance

    C code for the Earth Mover's Distance (archived here) Python implementation with references; Python2 wrapper for the C implementation of the Earth Mover's Distance; C++ and Matlab and Java wrappers code for the Earth Mover's Distance, especially efficient for thresholded ground distances

  1. Related searches f gmm r 2 calculator python program example with main function

    f gmm r 2 calculator python program example with main function code