Search results
Results from the WOW.Com Content Network
Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al 2 O 3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and ...
Aluminium(I) oxide is a compound of aluminium and oxygen with the chemical formula Al 2 O. It can be prepared by heating the stable oxide Al 2 O 3 with elemental silicon at 1800 °C under vacuum .
Aluminium oxides or aluminum oxides are a group of inorganic compounds with formulas including aluminium (Al) and oxygen (O). Aluminium(I) oxide ( Al 2 O ) Aluminium(II) oxide ( AlO ) (aluminium monoxide)
Sodium aluminate is an inorganic chemical that is used as an effective source of aluminium hydroxide for many industrial and technical applications. Pure sodium aluminate is a white crystalline solid having a formula variously given as NaAlO 2, NaAl(OH) 4 , [3] Na 2 O·Al 2 O 3, or Na 2 Al 2 O 4. Commercial sodium aluminate is available as a ...
The Bayer process is the principal industrial means of refining bauxite to produce alumina (aluminium oxide) and was developed by Carl Josef Bayer.Bauxite, the most important ore of aluminium, contains only 30–60% aluminium oxide (Al 2 O 3), the rest being a mixture of silica, various iron oxides, and titanium dioxide. [1]
Aluminium has a high chemical affinity to oxygen, which renders it suitable for use as a reducing agent in the thermite reaction. A fine powder of aluminium reacts explosively on contact with liquid oxygen ; under normal conditions, however, aluminium forms a thin oxide layer that protects the metal from further corrosion by oxygen, water, or ...
Aluminium(II) oxide or aluminium monoxide is a compound of aluminium and oxygen with the chemical formula AlO. It has been detected in the gas phase after explosion of aluminized grenades in the upper atmosphere [ 1 ] [ 2 ] [ 3 ] and in stellar absorption spectra.
Barium peroxide was once used to produce pure oxygen from air. This process relies on the temperature-dependent chemical equilibrium between barium oxide and peroxide: the reaction of barium oxide with air at 500 °C results in barium peroxide, which upon heating to above 700 °C decomposes back to barium oxide with release pure oxygen. [3]