Search results
Results from the WOW.Com Content Network
The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.
This coefficient of proportionality is called volume viscosity. Common symbols for volume viscosity are and . Volume viscosity appears in the classic Navier-Stokes equation if it is written for compressible fluid, as described in most books on general hydrodynamics [6] [1] and acoustics. [9] [10]
Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A series of steel ball bearings of different diameters are normally used in the classic experiment to improve the accuracy of the calculation.
For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In order to increase the calculation speed for viscosity calculations based on CS theory, which is important in e.g. compositional reservoir simulations, while keeping the accuracy of the CS method, Pedersen et al. (1984, 1987, 1989) [17] [18] [2] proposed a CS method that uses a simple (or conventional) CS formula when calculating the reduced ...
The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as
A simple and widespread empirical correlation for liquid viscosity is a two-parameter exponential: = / This equation was first proposed in 1913, and is commonly known as the Andrade equation (named after British physicist Edward Andrade). It accurately describes many liquids over a range of temperatures.