Search results
Results from the WOW.Com Content Network
In mathematics, the modular group is the projective special linear group (,) of matrices with integer coefficients and determinant, such that the matrices and are identified. The modular group acts on the upper-half of the complex plane by linear fractional transformations .
The matrices [e 1, ..., e n] are divisible by all non-zero linear forms in the variables X i with coefficients in the finite field F q. In particular the Moore determinant [0, 1, ..., n − 1] is a product of such linear forms, taken over 1 + q + q 2 + ... + q n – 1 representatives of ( n – 1)-dimensional projective space over the field.
When the field F has characteristic 0, or characteristic coprime to the group order, there is still such a decomposition of the group algebra F[G] as a sum of blocks (one for each isomorphism type of simple module), but the situation is relatively transparent when F is sufficiently large: each block is a full matrix algebra over F, the ...
The modular function is a continuous group homomorphism from G to the multiplicative group of positive real numbers. A group is called unimodular if the modular function is identically 1 {\displaystyle 1} , or, equivalently, if the Haar measure is both left and right invariant.
A modular function is a function that is invariant with respect to the modular group, but without the condition that it be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic : they are holomorphic on the complement of a set of isolated points, which are poles of the function.
In 1973, Pierre Deligne and Michael Rapoport showed that the ring of modular forms M(Γ) is finitely generated when Γ is a congruence subgroup of SL(2, Z). [2]In 2003, Lev Borisov and Paul Gunnells showed that the ring of modular forms M(Γ) is generated in weight at most 3 when is the congruence subgroup () of prime level N in SL(2, Z) using the theory of toric modular forms. [3]
(Boole's paper was Exposition of a General Theory of Linear Transformations, Cambridge Mathematical Journal.) [2] Classically, the term "invariant theory" refers to the study of invariant algebraic forms (equivalently, symmetric tensors) for the action of linear transformations. This was a major field of study in the latter part of the ...
That implies that any two rational functions F and G, in the function field of the modular curve, will satisfy a modular equation P(F,G) = 0 with P a non-zero polynomial of two variables over the complex numbers. For suitable non-degenerate choice of F and G, the equation P(X,Y) = 0 will actually define the modular curve.